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Cover illustration illustrates the statistical relation among water 
levels at individual wells in Huron County. Wells are identified 
by circles that enclose letters of the alphabet; well identifiers 
are shown to the lower right. Water levels at wells that are con-
nected directly by a line segment are correlated. Wells not 
directly joined by a line segment are conditionally independent, 
given an intervening well. Thus, water levels at well H1C are 
correlated with water levels at H10, but independent of water 
levels at all other wells in the network, given that data from 
H10 is available. The illustration was part of the analysis of 
monitoring effectiveness.
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CONVERSION FACTORS AND VERTICAL DATUM

 Multiply By To Obtain

inch (in) 25.4 millimeter
foot (ft) 0.3048 meter

mile (mi) 1.609 kilometer
square mile (mi2) 2.590 square kilometer

Temperature in degrees Fahrenheit (oF) can be converted to degrees Celsius (oC) 
as follows:  oC = 5/9 (oF - 32).

Vertical datum: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929 
(NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets 
of both the United States and Canada, formerly called Sea Level Datum of 1929.
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A Temporal and Spatial Analysis 
of Ground-Water Levels for 
Effective Monitoring in Huron 
County, Michigan

By D.J. Holtschlag and M.J. Sweat

ABSTRACT
Quarterly water-level measurements were ana-

lyzed to assess the effectiveness of a monitoring 
network of 26 wells in Huron County, Michigan. 
Trends were identified as constant levels and 
autoregressive components were computed at all 
wells on the basis of data collected from 1993 to 
1997, using structural time series analysis. Fixed 
seasonal components were identified at 22 wells 
and outliers were identified at 23 wells. The 95-
percent confidence intervals were forecast for 
water-levels during the first and second quarters of 
1998. Intervals in the first quarter were consistent 
with 92.3 percent of the measured values. In the 
second quarter, measured values were within the 
forecast intervals only 65.4 percent of the time. 
Unusually low precipitation during the second 
quarter is thought to have contributed to the 
reduced reliability of the second-quarter forecasts. 

Spatial interrelations among wells were inves-
tigated on the basis of the autoregressive compo-
nents, which were filtered to create a set of 
innovation sequences that were temporally uncor-
related. The empirical covariance among the inno-
vation sequences indicated both positive and 
negative spatial interrelations. The negative covari-
ance components are considered to be physically 
implausible and to have resulted from random sam-
pling error. Graphical modeling, a form of multi-
variate analysis, was used to model the covariance 
structure. Results indicate that only 29 of the 325 
possible partial correlations among the water-level 
innovations were statistically significant. The 
model covariance matrix, corresponding to the 
model partial correlation structure, contained only 
positive elements. This model covariance was 
sequentially partitioned to compute a set of partial 
covariance matrices that were used to rank the 
effectiveness of the 26 monitoring wells from 
greatest to least. Results, for example, indicate that 
about 50 percent of the uncertainty of the water-

level innovations currently monitored by the 26-
well network could be described by the 6 most 
effective wells. 

INTRODUCTION
A network of 26 ground-water-level monitor-

ing wells in Huron County, Michigan is operated 
by the County in cooperation with the U.S. Geo-
logical Survey. Information from the network is 
used to assess long-term and seasonal variations in 
ground-water levels and local changes that may be 
partly associated with human activities. Results 
from monitoring provide county planners and 
water-resources managers with data needed to 
develop ground-water-management plans that are 
consistent with available resources and expected 
demands. 

This report describes a technique for assessing 
and improving the effectiveness of ground-water-
level monitoring networks. The technique provides 
a statistical basis for extracting information on 
trends and seasonal variations in water levels at 
individual wells, forecasting ground-water levels, 
and assessing the potential redundancy in measure-
ments of spatially-correlated phenomena. Also, the 
technique provides a basis for improving the effec-
tiveness of data collection by identifying specific 
subsets of monitoring wells that provide data 
which is consistent with informational needs and 
available monitoring resources. The technique was 
applied to a network of 26 monitoring wells in 
Huron County, Michigan on the basis of quarterly 
water-level monitoring from 1993 to 1998. 

Description of the Study Area and 
Monitoring Wells

Huron County is in the east-central part of 
Michigan’s Lower Peninsula (fig. 1). The county, 
which is shaped roughly like a semicircle, is 
bounded along the north by 91 mi of Great Lake 
shoreline (Lake Huron and Saginaw Bay) and 
along the south by Sanilac and Tuscola Counties. 
Most streams start within the county and flow to 
the lake or bay. Land surface is flat to rolling; ele-
vations range from 580 ft above sea level along the 
shoreline to more than 800 ft near Ubly, Michigan. 
The county has an area of 830 mi2, most of which 
is pasture and cropland; population in 1990 was 
34,951. 
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Figure 1.  Location of monitoring wells in Huron County, Michigan.
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The geology of Huron County consists of con-
solidated strata of Mississippian and Pennsylva-
nian age and unconsolidated surficial deposits of 
Pleistocene age. From oldest to youngest, the con-
solidated strata are the Coldwater Shale, the Mar-
shall Formation, the Michigan Formation, the 
Bayport Limestone, and the Saginaw Formation 
(fig. 2). Throughout the county, unconsolidated 
lake and glacial deposits overlie the consolidated 
deposits with maximum thicknesses that range 
between 80 and 120 ft. 

In 1990, the U.S. Geological Survey (USGS) 
completed a study of the hydrogeology of Huron 
County, Michigan (Sweat, 1991). In 1993, Huron 
County and the USGS agreed to continue water-
level monitoring at 26 selected wells (fig. 1) 
throughout Huron County (Sweat, 1995, 1996, 
1997). The wells monitor hydraulic head (water-
levels) in four geologic units: 3 wells measure 
heads in the Coldwater confining unit, 17 wells 
measure heads in the Marshall aquifer, 5 wells 
measure heads in the Saginaw Formation, and 1 
well measures head in the glaciofluvial aquifer 
(table 1). Of the 26 wells operated, water levels are 
recorded continuously in 4 wells and measured 
quarterly in 22 wells. First quarter (January 
through March) measurements were generally 
made in March; second-, third-, and fourth-quarter 
measurements were generally made in June, Sep-
tember, and December, respectively. Measured 
depths to water below measuring points were con-
verted to elevations above sea level by subtracting 
depths from the elevation of the measuring point. 

Acknowledgments
James LeCureux and Carol Schadd of Huron 

County Cooperative Extension Service assisted the 
project by obtaining many of the field measure-
ments of water level. Fred Nurnberger, State Cli-
matologist of Michigan, provided precipitation 
data for Huron County, Michigan. 

TEMPORAL COMPONENTS OF GROUND-
WATER-LEVEL MEASUREMENTS

Repetitive ground-water level measurements 
track persistent and ephemeral changes in water 
levels through time. Persistent changes may 
include trend and seasonal components that charac-
terize the ground-water resource and provide infor-
mation needed for assessment and effective 

management. Ephemeral changes reflect day to 
day changes that are influenced by recent weather 
conditions, such as the amount of time since the 
last soaking rain. Ephemeral changes obscure 
detection of persistent patterns. 

Time-series analysis provides a systematic and 
consistent basis for identifying trends and seasonal 
components of water levels, quantifying autore-
gressive (serial correlation) characteristics, and 
describing the variability associated with ephem-
eral changes. Classical time-series analysis (Brock-
well and Davis, 1987) describe time series by use 
of ARIMA (autoregressive integrated moving 
average) models, following removal of trend com-
ponents. ARIMA models, however, are based on 
statistical assumptions that are often difficult to 
verify for hydrologic time series and generally 
require at least 50 and preferably 100 observations 
for estimation (Box and Jenkins, 1976, p. 18). 
Structural time-series analysis provide an alterna-
tive that can simultaneously identify trends, sea-
sonal components, autoregressive characteristics, 
and the influences of explanatory variables on time 
series with fewer observations than ARIMA mod-
els. Moreover, the description of trend and sea-
sonal components is flexible (not limited to 
simplified deterministic forms) and is directly 
interpretable from a physical perspective. 

Structural Time-Series Analysis
Structural time-series analysis (Harvey, 1994) 

as implemented by Koopman and others (1995) 
was used to identify trend, seasonal, and autore-
gressive components in quarterly water-level mea-
surements made in Huron County between 1993 
and 1997; outliers (unusual values) also were iden-
tified. Resulting models were used to forecast the 
expected values and uncertainties of water levels 
for the six quarters following the data used for 
model development. Forecast intervals were com-
pared with data obtained during the first two quar-
ters of 1998 to assess model adequacy. 

The general form of the structural time series 
model is: 

(1)

where
yt is the water-level measurement at time t, and 

µt is the trend component at time t. In structural 

yt µt γt λiwi t,
i I∈
∑ υ t+ + +=
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time-series models, trend is described by level (µt) 
and slope (βt) components, which may be either 
stochastic or deterministic. When the level is sto-
chastic, an uncorrelated random sequence ηt with a 
mean of zero and variance σ2

η, is introduced. Sim-
ilarly, when the slope is stochastic, an uncorrelated 
random sequence ζ t with mean zero and variance 
σ2

ζ  is present. (The random sequences ηt and ζ t 
also are assumed to be uncorrelated with each 
other). The effect of ηt is to allow the level to shift 
up and down locally, while ζ t allows the slope to 
change. In the special case where either σ2

η or σ2
ζ
 

are equal to zero, the corresponding components 
are considered deterministic and the associated 
trend component is uniform throughout the series. 
In the special case where the slope parameter, β, 
and σ2

η are equal to zero, the trend is a constant 
(level). The state-space representation of the trend 
component used in the structural model is: 

. (2)

γt is the seasonal component in the qth quarter at 
time t. As in the case of the trend component, the 
structural time series model provides the flexibility 
for stochastic seasonality.  The general form of the 
seasonal component is: 

. (3)

γ1, γ2, and γ3 are estimated seasonal coefficients for 
the first, second, and third quarters, respectively, 
corresponding to the periods Janary through 
March, April through June, and July through Sep-
tember. Because the seasonal components were 
restricted to sum to zero, the fourth seasonal com-
ponent, γ4 (October through December) was set 
equal to -(γ1 + γ2 + γ3). Here, the function Q(t) 
returns the quarter corresponding to time t, and δ(.) 
is the Kronecker delta function which returns a 1 if 
(Q(t) -q) evaluates to zero, and is zero otherwise. 
Possible stochastic disturbances in seasonality are 
described by the disturbance ω t, which is an uncor-
related random sequence with a mean of zero and 
variance of σ2

ω . When σ2
ω   is equal to zero, the 

µi t,
βi t,

µi t 1–, βi t 1–, ηi t,+ +

βi t 1–, ζ i t,+
=

γt δQ t ) q–( )( ) γq⋅
q 1=

4

∑ ω t+=

ERATHEM SYSTEM SERIES GROUP STRATIGRAPHIC UNIT HYDROGEOLOGIC UNIT THICKNESS 
(feet)

C
EN

O
ZO

IC

Quaternary Pleistocene Glacial and lacustrine 
deposits Surficial deposits

(aquifer)

0-10

Glacial deposits 0-120

PA
LE

O
ZO

IC

Unconformity

Pennsylvanian
Middle

Saginaw Formation Aquifer system 0-100
Lower

Unconformity

Mississippian Meramecian Grand 
Rapids

Bayport Limestone
Confining units

0-100

Michigan Formation 0-175

Osagean Marshall Formation Napoleon Sandstone
Member of Marshall
Formation (aquifer)

0-120

Sandstones in lower
part of Marshall

Formation (aquifer)
0-225

Kinderhookian Coldwater Shale Confining unit 1,000-1,200

Figure 2. Stratigraphic succession and aquifer nomenclature in Huron County, Michigan (Sweat, 1991).
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Vertex Well number Latitude Longitude
Altitude

(feet above
sea level)

Hole depth 
(feet below 

land surface)

Aquifer 
code

A H1C 43o41'44" 83o27'44" 600.00 76 S

B H2r 43o41'03" 83o13'03" 747.60 91 G

C H3 43o42'19" 83o10'42" 731.70 120 M

D H4 43o44'02" 83o05'59" 751.60 80 M

E H5r 43o43'23" 82o56'19" 796.03 171 M

F H6 43o45'26" 82o50'26" 781.50 90 M

G H7 43o42'08" 82o41'11" 726.80 140 C

H H9r 43o49'47" 83o23'33" 584.20 180 S

I H10 43o49'43" 83o19'08" 617.07 150 S

J H13 43o49'00" 83o13'16" 642.35 120 S

K H14 43o49'00" 83o07'18" 681.30 100 M

L H15B 43o48'11" 83o02'16" 751.20 99 M

M H16 43o48'53" 82o56'52" 771.50 160 M

N H17 43o48'39" 82o49'24" 751.00 80 M

O H19 43o52'42" 83o15'39" 611.90 100 M

P H20 43o53'26" 83o10'57" 631.00 60 S

Q H21 43o54'48" 83o01'27" 702.90 80 M

R H22 43o52'13" 82o57'47" 695.50 150 M

S H23 43o54'45" 82o48'42" 721.80 150 C

T H24 43o54'11" 82o44'42" 691.50 100 C

U H25Ar 43o57'36" 83o09'48" 600.80 200 M

V H25B 43o57'36" 83o09'48" 601.00 160 M

W H25C 43o57'36" 83o09'48" 602.20 40 M

X H26 43o56'42" 83o02'55" 662.70 60 M

Y H27 43o57'33" 82o54'58" 716.50 80 M

Z H28 43o57'33" 82o51'22" 691.70 75 M

Table 1. Selected attributes of monitoring wells in Huron County, Michigan
[G, indicates well in glaciofluvial aquifer; S, indicates well in the Saginaw aquifer system;
M, indicates well in Marshall aquifer; and C, indicates Coldwater confining unit.
Well numbers ending in an “r” indicate that water levels are recorded continuously.]
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seasonal component is deterministic (fixed) and γt 
= γq. 

 is a term that accounts for individ-
ual outliers indexed by the elements i of the set of  
outliers {I}.  The scalar λi coefficents indicate the 
magnitude of outliers corresponding to the pulse 
intervention vectors represented by wi,t. The indi-
vidual vectors take on a value of one during peri-
ods of intervention (corresponding to outliers) and 
are zero otherwise. Finally, υt is the autoregressive 
error component of the form: 

, (4)

where ϕ is the autoregressive coefficient for com-
ponents that are separated by one season (lag 1). In 
the special case where ϕ is equal to 0, the error υt 
is an uncorrelated disturbance sequence with mean 
zero and variance σ2

ε. In this analysis, εt was com-
puted as υt - ϕυt-1, and is referred to subsequently 
as the innovation sequence. 

In the analysis for each monitoring well, time-
series models potentially included stochastic level, 
slope, and seasonal components and an autoregres-
sive component. Model components were elimi-
nated in a stepwise procedure to minimize the 
Bayesian Information Criteria (BIC), a statistic that 
decreases with model-error variance and increases 
with the number of (fixed) parameters and stochas-
tic components (hyperparameters) in the model. In 
general, stochastic components were eliminated 
before deterministic components. Standardized 
residuals that had a magnitude greater than 2.0 
were examined to identify possible outliers. To 
confirm the presence of outliers, models were com-
puted with and without intervention variables cor-
responding to possible outliers. The model with the 
minimum BIC value was selected. In addition to 
estimating intervention effects, the structural 
model also has the flexibility to estimate the effects 
of explanatory (independent) variables on water 
levels. 

Results of Time-Series Analysis
The identified time-series models were simple 

and remarkably consistent from well to well (table 
2 and figs. 3-8). All models included autoregres-
sive error components with positive (AR 1) coeffi-
cients. None of the selected models included 
stochastic components in levels, slopes, or season-

als. In addition, no deterministic slope components 
were significant, thus all trend components are 
described as constant levels. Model structures dif-
fered only by the presence or absence of a fixed 
seasonal component and the number of outliers 
detected. 

Seasonal components were identified at 22 of 
the 26 wells analyzed. Water levels in 4 wells com-
pleted in the Marshall formation had no seasonal 
components; however, water levels in 13 other 
wells in the Marshall formation had seasonal com-
ponents. Inspection of seasonal components indi-
cate that 20 of the first quarter and 21 of the second 
quarter coefficients were positive, indicating 
higher than average water levels in the first two 
quarters of the year. In contrast, seasonal coeffi-
cients were negative in all 22 wells during the third 
quarter, indicating lower than average water levels 
for this period. Results in the fourth quarter were 
mixed, with 11 wells having positive and 11 wells 
having negative coefficients, which were com-
puted as the negative sums of the estimated coeffi-
cients. 

A total of 35 outliers were identified at 23 
wells; 28 of these outliers were negative and 7 
were positive. The most outliers at any one well 
was three. Most (32) of the outliers occurred in the 
third quarter, 21 of these occurred in the third quar-
ter of 1995 alone. The total number of outliers 
identified represents a larger percentage (6.7 per-
cent) of the measurements than expected for a sam-
ple from a population described by a single normal 
probability distribution. The large number of outli-
ers in 1995 may be partly related to precipitation 
patterns. Review of precipitation records at Bad 
Axe, Michigan in central Huron County indicates 
that third quarter precipitation of 6.95 inches in 
1995 was far below average for the four remaining 
years of 12.96 inches. Inclusion of quarterly pre-
cipitation as a covariate in the structural time-series 
analysis, however, did not significantly reduce 
model error. 

Water-level forecasts and associated uncertain-
ties were computed on the basis of the model 
developed with five years of data available through 
the fourth quarter of 1997. During the first quarter 
of 1998, measured water levels were within the 95 
percent of the lead-1 (one quarter ahead of the last 
measurement used in model development) forecast 
intervals in 92.3 percent of the cases (24 of 26 

λiwi t,
i I∈
∑

υt ϕυ t 1– εt+=



7

Well 
number

Level
(RMSE)

(feet 
above 

sea level)

Seasonal Component

AR Coef.
(σε)

Outlier

SEPCoef. γ1
(RMSE)

Coef. γ2
(RMSE)

Coef. γ3
(RMSE)

Date
(YR-Q) Coef. λ RMSE

H1C 583.78
(3.42)

-0.356
(.150)

0.688
(.143)

-0.298
(.157)

0.988
(.560)

95-3 -2.00 0.445 0.486

H2r 715.44
(.126)

0.354
(.179)

0.586
(.177)

-0.767
(.192)

0.146
(.477)

95-3 -1.43 .527 .415

H3 702.17
(.191)

0.078
(.137)

0.364
(.133)

-0.348
(.162)

0.538
(.410)

93-3
95-3

-1.03
-1.56

.417

.417
.345

H4 738.45
(.216)

0.126
(.163)

0.279
(.158)

-.294
(.173)

0.512
(.492)

95-3 -1.31 .490 .428

H5r 783.75
(.328)

-- -- -- 0.310
(1.03)

-- -- -- 1.012

H6 767.37
(.194)

0.431
(.167)

0.399
(.163)

-0.924
(.199)

0.451
(.483)

95-3
96-3

-1.14
1.52

.509

.509
.406

H7 709.83
(.086)

0.129
(.061)

0.205
(.059)

-0.216
(.053)

0.583
(.170)

96-2
97-1

-1.10
-2.84

.165

.166
.143

H9r 579.41
(.673)

0.166
(.180)

0.647
(.173)

-0.340
(.189)

0.829
(.625)

95-3 -1.68 .538 .544

H10 592.63
(.103)

0.228
(.093)

0.368
(.083)

-0.410
(.091)

0.469
(.251)

94-1
95-3

-5.23
-.55

.255

.254
.211

H13 609.89
(.245)

0.721
(.279)

0.618
(.275)

-1.490
(.299)

0.293
(.779)

95-3 -2.40 .836 .678

H14 676.27
(.220)

0.073
(.221)

0.421
(.217)

-0.545
(.236)

0.366
(.633)

95-3 -1.65 .665 .551

H15B 734.27
(.599)

0.258
(.277)

0.204
(.267)

-0.728
(.292)

0.694
(.904)

95-3 -2.78 .831 .787

H16 742.08
(.342)

0.061
(.175)

0.551
(.169)

-0.433
(.185)

0.661
(.564)

95-3 -1.20 .526 .491

H17 743.42
(.278)

1.497
(.249)

1.513
(.243)

-3.848
(.346)

0.436
(.692)

94-3
95-3
96-3

4.52
-16.45

5.42

.777

.777

.777

.561

H19 607.66
(.120)

0.219
(.098)

-0.496
(.096)

-0.335
(.096)

0.469
(.296)

-- -- -- .266

Table 2. Structural time-series components of water levels in wells in Huron County, Michigan
[RMSE, Root mean square error; SEP, Standard error of prediction; AR--Autoregressive;
Yr-Q, two-digit year code and quarter (January-March equals 1)]
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H20 617.07
(.152)

-0.150
(.107)

0.497
(.104)

-0.244
(.104)

0.541
(.330)

-- -- -- 0.297

H21 692.67
(.092)

0.282
(.111)

0.189
(.109)

-0.739
(.133)

0.251
(.300)

95-3
96-3

-1.05
1.51

0.336
.336

.252

H22 681.64
(.214)

0.402
(.131)

0.358
(.127)

-0.903
(.155)

0.604
(.403)

95-3
96-3

-1.34
1.40

.398

.398
.339

H23 712.25
(.101)

0.045
(.028)

0.011
(.027)

-0.071
(.029)

0.822
(.097)

95-3 -0.20 .084 .085

H24 665.87
(.128)

0.250
(.063)

0.236
(.061)

-.450
(.066)

0.676
(.203)

96-3 0.40 .188 .177

H25Ar 594.77
(.226)

-- -- -- 0.278
(.735)

95-3 -2.19 .717 .701

H25B 598.33
(.210)

0.120
(.154)

0.345
(.150)

-.587
(.164)

0.523
(.468)

95-3 -1.78 .464 .408

H25C 598.50
(.115)

-- -- -- 0.124
(.438)

93-3
95-3

-2.06
-2.71

.443

.443
.405

H26 658.21
(.174)

-- -- -- 0.278
(.559)

93-3
95-3

-2.88
-5.08

.545

.545
.518

H27 683.57
(.293)

0.362
(.140)

0.256
(.135)

-0.589
(.166)

0.688
(.448)

95-3
97-3

-1.11
-5.05

.426

.426
.376

H28 671.98
(.141)

0.758
(.157)

0.423
(.154)

-1.387
(.187)

0.303
(.431)

95-3
96-3

-1.40
2.88

.476

.476
.362

Well 
number

Level
(RMSE)

(feet 
above 

sea level)

Seasonal Component

AR Coef.
(σε)

Outlier

SEPCoef. γ1
(RMSE)

Coef. γ2
(RMSE)

Coef. γ3
(RMSE)

Date
(YR-Q) Coef. λ RMSE

Table 2. Structural time-series components of water levels in wells in Huron County, Michigan--Continued
[RMSE, Root mean square error; SEP, Standard error of prediction; AR--Autoregressive;
Yr-Q, two-digit year code and quarter (January-March equals 1)]
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Figure 3.  Water levels and time-series components at wells H1C, H2r, H3, H4, and H5r.
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Figure 4.  Water levels and time-series components at wells H6, H7, H9r, H10, and H13.
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Figure 5.  Water levels and time-series components at wells H14, H15B, H16, H17, and H19.
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Figure 6.  Water levels and time-series components at wells H20, H21, H22, H23, and H24.
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Figure 7.  Water levels and time-series components at wells H25Ar, H25B, H25C, and H26.
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Figure 8.  Water levels and time-series components at wells H27 and H28.
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wells), indicating close agreement with the fore-
casts. In contrast, during the second quarter of 
1998, only 65.4 percent of the measured water-lev-
els were within the 95 percent of the lead-2 fore-
cast intervals. All measured water levels that were 
outside the forecast intervals were too low. Part of 
the discrepancy between measured and forecast 
intervals during the second quarter may be associ-
ated with low second-quarter precipitation 
amounts. Specifically, during the second quarter of 
1998, total precipitation was 5.62 inches, com-
pared with an average second quarter precipitation 
of 9.14 inches during the model estimation (1993-
1997) period. Identifying a measure of precipita-
tion that is more highly related to the water levels 
than quarterly totals may help improve the forecast 
model performance. 

SPATIAL INTERRELATIONS AMONG 
GROUND-WATER LEVEL 
MEASUREMENTS

In addition to the temporal components of 
ground-water measurements, ground-water levels 
also are spatially correlated. This correlation is 
thought to be positive, that is, where point mea-
surements indicate above (below) average water 
levels, nearby points are also likely to be above 
(below) average. The physical basis for this 
assumption results from the regional nature of rain-
fall, which is a primary cause of ground-water 
level fluctuations (in areas not influenced by 
pumping), and from the ground-water flow 
response to water-level gradients. 

The positive correlation among water-level 
measurements creates the potential for data redun-
dancy and inefficiency in monitoring networks. 
Quantifying the spatial correlation structure is 
needed to assess its impact on monitoring effec-
tiveness. Variogram analysis (Cressie, 1991, and 
Isaaks and Srivastava, 1989) is a common tech-
nique for estimating the spatial correlation struc-
ture as a function of separation distances between 
measurements. It is, however, not particularly 
appropriate for analysis of monitoring networks 
where there are few unique separation distances 
because repeated measurements are made at a lim-
ited number of wells, or where separation distance 
itself is not a reliable indicator of spatial correla-
tion because of differences in the hydraulic proper-
ties of geologic units separating wells in different 

strata. Thus, the analysis of spatial interrelations 
developed in this report does not rely on a consis-
tent relation between separation distance and corre-
lation to analyze effectiveness, but utilizes the 
available statistical evidence directly. It is similar 
to variogram analysis, however, in that an empiri-
cal covariance structure is used as a basis for a 
more theoretically appropriate model covariance 
structure. 

In this report, the covariance matrix is used to 
describe how water levels vary together. For this 
square matrix, the number of rows (columns) cor-
responds to the number of wells in the network. 
Variances of water-level components at individual 
wells are contained on the main diagonal of the 
matrix, with covariances between water-level com-
ponents at different wells on off-diagonal terms. 
Simple correlation coefficients can be computed by 
dividing individual covariances by the square root 
of the product of corresponding variance compo-
nents. The covariance matrix is symmetric along 
the main diagonal. 

To interpret the covariance matrix for network 
effectiveness, each water-level sequence was 
adjusted to remove any nonstationarity so that 
water-level measurements represented the same 
population. Thus, trend and seasonal components, 
when present, were subtracted from the values of 
the water-level measurements, resulting in residual 
sequences that had a mean of zero. The effects of 
outliers also were removed so that the data ana-
lyzed were approximately normally distributed. 
About 93.3 percent of the measurements are 
thought to arise from a normal probability distribu-
tion, for which the model is applicable; 6.7 percent 
of the measurements, corresponding to outliers, 
may arise from a different distribution, which is 
not accounted for by the model. Finally, effects of 
temporal correlation in the residual sequences were 
removed by filtering. Filtering, as used in this 
report, is a mathematical operation that subtracts 
the product of the autoregressive coefficient and 
the value of the lag 1 residual (at the previous time 
step) from the residual value, resulting in a loss of 
one measurement value in the analysis. The result-
ing filtered residual sequences are referred to as 
innovation sequences  (eq. 4) in this report. 

An empirical estimate of the covariance of the 
innovation sequences was computed as a prelimi-

εt
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nary estimate of the structure of the spatial interre-
lations. Specifically, row vectors of innovations of 
length n=19 (5 years of quarter measurements 
minus the measurement used in filtering) were 
stacked for each of the p=26 monitoring wells to 
form the  matrix. Then, the empirical covari-
ance matrix  was computed as: 

. (5)

Results of this calculation indicate that the 
signs of elements in the empirical covariance 
matrix were generally positive, although a few 
were negative (fig. 9). Because of the positive spa-
tial correlation in rainfall patterns and the flow 
response of ground-water levels to head gradients, 
however, the negative covariances are not physi-
cally plausible. More likely, the negative covari-
ance estimates are the result of sampling error 
(resulting from a limited number of measurements 
rather than from errors in the measured values). 
Similarly, the statistical significance of positive 
covariances are difficult to evaluate. To overcome 
these limitations for inferring spatial interrelations 
from an empirical covariance matrix, a model was 
developed for the covariance structure. 

A Graphical Model of the Covariance Structure
Graphical modeling is a form of multivariate 

analysis that represents statistical interrelations by 
use of independence graphs (Edwards, 1995, Whit-
taker, 1990). Graphical models are based on an 
analysis of the inverse empirical covariance 
matrix, . Off-diagonal elements of  
(referred to as the precision matrix) are the esti-
mated partial correlation coefficients. Under a mul-
tivariate normal assumption, any two variables 
(water-level innovations) are conditionally inde-
pendent if the corresponding elements in the 
inverse covariance matrix are equal to zero. Thus, 
replacing elements in the precision matrix with 
zero that are not significantly different from zero, 
simplifies the description of spatial interrelations. 

In this analysis, graphical models were devel-
oped by initially assuming an independence 
model1, that is, all partial correlations were zero 
and the corresponding initial model covariance 
matrix, , was equal to the diagonal matrix of . 
Then, a set of 26 alternative covariance matrices 

 was created corresponding to the covariance 
structures for all possible single-well monitoring 
networks. Elements in the alternative covariance 
matrices were computed in an iterative manner to 
meet the constraints that (1) the diagonal elements 
in the covariance matrix set  were equal to the 
diagonal elements of , (2) the off-diagonal ele-
ment pairs in  were equal to the corresponding 
elements in , and (3) the off-diagonal element 
pairs in the precision matrix set  were the only 
non-zero partial correlation pairs in the precision 
matrices. The set of maximized log-likelihood 
functions was evaluated for the set of covariance 
and precision matrices as: 

, (6)
where
n equals the number of innovations, 
q{1} is the trace (sum of the diagonal components)
     of the matrix product , and

 is the determinant of the alternative covariance
     matrix.

A set of Bayesian Information Criteria (BIC) 
values was computed as 

(7)

where p{1} is the number of model parameters. 
The maximum value of the BIC1 in the set 

BIC{1} and the corresponding monitoring well was 
selected as the most effective single-well monitor-
ing network. The graphical modeling analysis pro-
ceeded in a stepwise manner to identify additional 
effective wells until BIC{k} could not be decreased 
any further. 

An independence graph resulting from this 
analysis is interpreted as follows: (1) vertices (cor-
responding to water-level innovations at individual 
wells) that are not connected by an edge are not 
significantly correlated (assuming multivariate 
normality, they are independent); (2) vertices that 
are directly connected by an edge are correlated 
(not independent), and (3) vertices that are con-
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 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A +                          
B - +                         
C + + +                        
D + + + +                       
E - + + + +                      
F + + + + + +                     
G + + + + + + +                    
H + - + + - + - +                   
I + + + + + + + + +                  
J + + + + + + + + + +                 
K + + + + + + + + + + +                
L - + + + + + + + + + + +               
M - + + + + + + + + + + + +              
N + + + + + + + + + + + + + +             
O + + + + + + + - + + + + + + +            
P + + + + + + + + + + + + + + + +           
Q + + + + - + + + + + + + + + + + +          
R + + + + + + + + + + + + + + + + + +         
S + + + + + + + + + + + + + + + + + + +        
T + + + + + + - + + + + + + + + + + + - +       
U + + + + + + + + + + + + + + + + + + + + +      
V + + + + + + + + + + + + + + + + + + + + + +     
W + - + + + - - - + - - - - - - + + - + - - + +    
X + - + + + - + + + - - + + + - + + + + - - + + +   
Y - + + + + + + - + + + + + + + + + + + + + + - + +  
Z + + + + + + + - + + + + + + + + + + + + + + + + + +
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Figure 9.  Signs of elements of the empirical covariance matrix 
(Note: the covariance matrix is symmetrical about the main 
diagonal, so only the lower triangular portion is shown).
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nected through an intervening vertex are uncorre-
lated after accounting for the effect of the 
intervening vertex (conditionally independent). 
Thus, a diagram of the independence graphs 
depicts the significant spatial interrelations among 
water-level innovations and is associated with a 
model covariance matrix. 

Results of Graphical Modeling
A graphical model of water-level innovations 

was developed by use of MIM 3.0 (HyperGraph 
Software, 1998). Starting with an independence 
model, a forward selection process of 29 steps 
reduced the Bayesian Information Criteria from 
600.3 for BIC0 to 292.0 for BIC29 (fig. 10). The 
selected model included 23 sets of mutually con-
nected sets of vertices (cliques) formed by 29 of 
the possible 325 edges (fig 11). Of the 23 cliques, 
19 consisted of two-vertex sets, such as {A I} and 
{B K}, and 4 were three-vertex sets, including {C J 
K} and {E F K}. Of the 26 vertices, 11 were first 
degree (directly connected to only 1 other vertex), 
5 were second degree, 6 were third degree, 1 was 
fourth degree, and 3 were fifth degree vertices. The 
degree of a vertex indicates the number of condi-
tioning vertices needed for independence at that 
vertex. Thus 11 wells are independent of innova-
tions throughout the remaining network, given 
water levels at only one other well. The water-level 
monitoring network is connected, in the sense that 
there is a path (a sequence of edges) between every 
pair of vertices. 

Three principal sub-networks can be defined 
on the basis of separation by vertex L (Well 
H15B): NA, defined as the set of vertices, equal to 
{A B C F H I J K M N Q R T U}, NB equal to {D S 
V W X Z}, and NC ={E G O P Y}. This separation 
implies that water-level innovations in any one 
sub-network are conditionally independent of inno-
vations in the remaining two subnetworks given 
data at well H15B. The spatial interrelations indi-
cated by the graphical model are shown in fig. 12, 
where the vertices are located geographically 
within Huron County. 

ACHIEVING EFFECTIVENESS BY 
RANKING MONITORING WELLS AND 
SPECIFYING NETWORK CONSTRAINTS

Time-series analyses were used to identify reg-
ular and irregular components of water-level fluc-

tuations in monitoring wells. The regular 
components, such as trend and seasonal character-
istics, were used to describe and forecast water lev-
els. The irregular component, referred to as the 
autoregressive component, was used to character-
ize the uncertainty in water-level information. 
After filtering to remove the influence of autocor-
relation, the irregular component was used with 
graphical modeling to quantify the spatial interrela-
tions among water-levels. This description of spa-
tial interrelations provides a basis for improving 
the monitoring effectiveness. Specifically, the 
description can be used to identify an appropriate 
subset of monitoring wells to meet specifications 
on network uncertainty or constraints on monitor-
ing resources. 

In this report, the uncertainty of the network 
refers to the quarterly variability in water-level 
innovations that are not accounted for by monitor-
ing. If quarterly monitoring were to continue at all 
wells, the uncertainty of the network would be 
zero. If monitoring were discontinued, an estimate 
of uncertainty could be based on the sum of diago-
nal elements (trace) of the model covariance 
matrix. For all other monitoring options, an esti-
mate of the network uncertainty could be based on 
those variance components that are not accounted 
for by monitored wells. The square root of the 
summed variance components is used here to pro-
vide a measure of uncertainty that is consistent 
with the measurement unit of feet. 

The model covariance matrix can be parti-
tioned into four components to correspond with a 
set of unmonitored wells {Y} and a set of moni-
tored wells {Z} as 

, (8)

where
 is the model covariance structure inferred

      from graphical modeling,
 is the model covariance among the 

     unmonitored wells,
 is the model covariance among the 

    monitored wells, and 
, and its transpose , is the model 

    covariance among the monitored and 
    unmonitored wells. 

Σ̃29
Σ̃ YY{ }Σ̃ ZY{ }

Σ̃ YZ{ }Σ̃ ZZ{ }

=

Σ̃29

Σ̃ YY{ }

Σ̃ ZZ{ }

Σ̃ YZ{ } Σ̃ ZY{ }
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Figure 1: Geographic reference for the independence graph in Huron County, Michigan. 
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This partitioning strategy is used to describe 
the network uncertainty remaining after selecting a 
subset of monitoring wells {Z} of varying size by 
computing the model partial covariance structure 
as: 

, (9)

where
  is the model partial covariance structure of
     the set of unmonitored wells {Y}, given that
     wells in the set {Z} are being monitored, and
  is the inverse model covariance of the 
    monitored wells. 

 The maximum uncertainty of water-level inno-
vations in the network corresponds to having no 
monitoring wells, that is 

, where tr is the 
trace. From this point, a set of 26 partial covariance 
matrices  were computed corresponding 
to all 26 single-well networks. The most effective 
single-well monitoring network was identified by 
selecting the partial covariance matrix with the 
minimum trace of . The well corresponding 
to this network was added to the set {Z}={Z1}. The 
computation, selection, and addition procedure was 
repeated for the 25 two-well networks that are pos-
sible after the first well is selected. The computa-
tion proceeded in a similar manner until all 26 
wells were included in the set of monitored wells. 

The sequence of wells identified provides a 
ranking of monitoring wells from the most effec-
tive (well H6) to the least effective (well H7) (fig. 
13). The nonlinear decrease in uncertainly shows 
that water-level innovations are not equally 
(co)variable at all wells. Further, the ranking pro-
vides a mechanism for selecting the most effective 
subset of wells for meeting uncertainty specifica-
tions or monitoring constraints. 

For example, if monitoring resources were suf-
ficient to operate only 6 monitoring wells, the most 
effective network would be the set {H6, H5, H15B, 
H25Ar, H26, H9r} (fig. 13). This is the same set of 
wells that most effectively accounts for 50 percent 
of the uncertainty currently monitored by the net-
work of 26 wells. By extension, figure 13 can be 
used to identify the subset of wells that most effec-
tively meets a specified uncertainty for any 
reduced sized network. 

The relationship in figure 13 is applicable only 
to the proportion (93.3 percent) of the measure-
ments likely to arise from the multivariate normal 
distribution described by the graphical model. That 
is, about 6.7 percent of water-level measurements 
were classified as outliers that arise from an 
unknown probability distribution. The network 
uncertainty from these outlier-type measurements 
are not explicitly accounted for in the analysis. If 
the probability of outliers were equal at all wells, 
however, the most effective network would consist 
of the same subset of wells, although the percent-
age of total uncertainty accounted for by a reduced 
network would be less than that indicated by 
figure 13. 

SUMMARY
Quarterly ground-water level measurements 

between 1993 and 1998 at 26 wells in Huron 
County, Michigan were analyzed to assess the 
effectiveness of the monitoring network. A struc-
tural time-series analysis identified trend, seasonal, 
and autoregressive components and statistical out-
liers in the series at individual wells. Results indi-
cate that trend components at all sites were 
constant levels and that residuals contained an 
autoregressive component. In addition, fluctuations 
of water levels in 22 wells followed a fixed sea-
sonal pattern. A total of 35 outliers were identified, 
21 of which occurred in third quarter of 1995. 
Although the large number of outliers in 1995 may 
be related to unusual rainfall during that year, the 
number of outliers may indicate that sampled water 
levels arise from two statistical distributions: a nor-
mally distributed population constituting perhaps 
93.3 percent of the measurements and a more 
extreme distribution generating the remaining 6.7 
percent. 

The structural time-series models were used to 
forecast water-level intervals for 6 quarters begin-
ning with the first quarter of 1998. Comparison 
between forecast intervals and measurements dur-
ing the first two quarters of 1998 produced some-
what discrepant results. Results for the first quarter 
indicate that forecast intervals were in close agree-
ment with measured values; results in the second 
quarter indicate that forecast intervals were often 
higher than measured values. Poor results during 
the second quarter of 1998 may be related to 
unusually low precipitation amounts. Finally, the 

Σ̃YY Z⋅ Σ̃YY Σ̃YZ Σ̃ZZ
1– Σ̃ZY–=

Σ̃YY Z⋅

Σ̃ZZ
1–

tr Σ̃29( ) tr Σ̃YY Z⋅( ) for  {Z} ∅{ }= =

Σ̃YY Z 1{ }⋅

Σ̃YY Z 1⋅
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Figure 1: Relation between number of wells monitored and network uncertainty.
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autoregressive coefficient estimated in the struc-
tural time series models were used to filter the 
autoregressive errors and produce innovation 
sequences used in the evaluation of the monitoring 
effectiveness. 

The innovation sequences were used to com-
pute an empirical estimate of the spatial interrela-
tions among water-level innovations. Although the 
spatial interrelations were expected to be positive, 
some of the individual empirical innovation covari-
ances were negative. Although the negative empir-
ical covariances are thought to arise from sampling 
error, further analysis was needed to determine the 
statistically significant interrelations. Thus graphi-
cal modeling, which is a form of multivariate anal-
ysis, was used to model the spatial interrelations 
among water level innovations. The graphical 
model identified 29 significant interrelations 
among the possible 325 estimated by the empirical 
covariance matrix. Thus the graphical model not 
only simplified the description of interrelations 
among wells, but also resulted in a model covari-
ance matrix in which no covariance elements were 
less than zero. 

The model covariance matrix was used to rank 
the effectiveness of alternative subsets of monitor-
ing wells. The uncertainty of a network with no 
monitoring wells was computed as the square root 
of the trace of the model covariance matrix. For 
sub-networks composed of from 1 to 25 monitor-
ing wells, effectiveness was based on a partitioning 
of the model covariance matrix. The uncertainty 
for the full network was assumed to be zero. The 
results provide a mechanism for selecting subsets 
of monitoring wells, should reductions in the moni-
toring network be required. 
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